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Mass spectrometric analyses of protein digests produce
large numbers of fragmentation spectra that are not iden-
tified by routine database searching strategies. Some of
these spectra could be identified by development of im-
proved search engines. However, many of these spectra
represent fragmentation of peptide components bearing
modifications that are not routinely considered in data-
base searches. Here we present new software within Pro-
tein Prospector that allows comprehensive analysis of
data sets by analyzing the data at increasing levels of
depth. Analysis of published data sets is presented to
illustrate that the software is not biased to any instrument
types. The results show that these data sets contain many
modified peptides. As well as searching for known mod-
ification types, Protein Prospector permits the detection
and identification of unexpected or novel modifications by
searching for any mass shift within a user-specified mass
range to any chosen amino acid(s). Several modifications
never previously reported in proteomics data were iden-
tified in these standard data sets using this mass modifi-
cation searching approach. Molecular & Cellular Pro-
teomics 7:2386–2398, 2008.

There are many search engines available to the researcher
for the analysis of proteomics data produced by tandem mass
spectrometry. Here we present the performance of one of
these: Protein Prospector. The large volume of data typically
produced in modern proteomics experiments is too vast for
manual interpretation and verification of results, so computer
algorithms have been developed for database searching of
data and are now routinely relied upon to produce trustworthy
results (1). For this approach to be acceptable it is important
that a metric of reliability be attached to any peptide or protein
identification reported from use of such a database search
engine. The most commonly reported measure of this is an
expectation value. This value can be calculated by two differ-
ent approaches. Either a theoretical model is constructed for
peptide fragmentation from which a probability and an expec-

tation value can be derived (the approach used by, for exam-
ple, the Mascot search engine (2)), or search engine-derived
matches to a given spectrum deemed to be incorrect are
modeled to a distribution, and then a probability and expec-
tation value are derived from this model (the approach used
by, for example, X!Tandem (3)). Protein Prospector uses the
latter of these two approaches. We used Protein Prospector
to analyze a group of “standard” data sets acquired on a
variety of different instrument platforms (4) to assess its reli-
ability, sensitivity, and flexibility in analyzing different LC-MS
data types using an accepted method to calculate peptide
false positive identification rates for the results (5).

Most mass spectrometry search engines are reliable at
matching peptide sequences to a significant number of tan-
dem mass spectra. However, in all data sets there are still a
large number of spectra that are not matched successfully by
search engines. One reason for this situation is that a signif-
icant number of the spectra actually correspond to modified
peptides. Typical search engine analysis strategies constrain
themselves to a very limited number of commonly occurring
modifications. However, because some 500 different peptide
modifications are already listed in Unimod, use of this type of
restricted searching will never extract all the useful informa-
tion from a data set (21).

The number of modified peptides in proteomic samples is
predicted to be very high; for example, a recent estimate
suggested the presence of 8–12 modified versions for each
unmodified peptide present (6), although most of these mod-
ified species are presumed to be present at very low stoichi-
ometry. Several software tools have already been developed
to try to identify these modified peptides. Although most
conventional search engines can look for a wide variety of
modifications using a defined list of choices, they generally
suffer from two problems. First the discriminatory power (the
ability to distinguish between correct and incorrect answers)
drops dramatically when looking for a large number and va-
riety of modifications. This means that, depending on where
the threshold is drawn for reporting matches as significant,
either fewer answers are reported than in the equivalent
search where the modifications were not considered (i.e.
more false negatives where the search engine gets the correct
answer but the match is not deemed significant), or there are
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a larger number of false positive identifications. The second
issue encountered is that the search speeds become imprac-
tically slow because of the increased number of permutations
(search space) that need to be considered.

One approach that has been used to tackle the loss of
discriminatory power is to tabulate all the mass shifts reported
by the software for each amino acid in a large data set (7).
Assuming that incorrect assignments will distribute randomly
with respect to mass shift and amino acid to which it is
assigned, those matches containing mass modifications to
particular amino acids that are reported multiple times are
more likely to represent bona fide modified peptides. This
approach works for identifying mass modifications for the
peptide but is often unreliable at determining the correct
residue of modification. This is because the mass spectra that
are being searched often do not contain sufficient information
to distinguish the exact residue of modification. Hence for
example, a mass shift of �16 Da (oxidation) is reported more
often than at random for practically all amino acids, even
those that cannot become oxidized.

The second issue of addressing the search speed can be
handled by looking for the modifications on only a small
subset of all peptides/proteins in the database. This is com-
monly done by first searching the data set using a conven-
tional search engine strategy focusing on reliably identifying
proteins in the sample on the basis of unmodified peptides.
Then only those proteins (7) or peptides (8) identified in the
initial search are considered in the search for modified pep-
tides. This assumes that modified peptides will only be found
associated with proteins for which unmodified peptides were
also present. This type of modification search is sometimes
done by trying to correlate the spacing of peaks in uniden-
tified spectra to those in spectra identified in the initial
search (7). Alternatively de novo interpretation of some or all
of the amino acid sequence (9, 10) can be used to restrict
the search space.

Here we describe the adaption of an existing algorithm,
Batch-Tag, to allow searching of tandem mass spectra for
mass modifications. The search can consider any mass mod-
ification within a mass range (positive or negative modifica-
tion) on either selected or all amino acid residues on the N or
C terminus or a modification that is observed as a neutral loss
in MSMS analysis (preventing modification site assignment)
(11, 12). Like other software, these searches are normally
performed against a particular list of database protein acces-
sion numbers that were identified in an initial search (that
considered only a restricted list of modifications).

MATERIALS AND METHODS

All the data used in this study were created in a previously pub-
lished study, so for experimental details see Klimek et al. (4). For
analysis of data acquired on different instruments, mzXML peak lists
posted on the Seattle Proteome Center Public Data Repository were
used (regis-web.systemsbiology.net/PublicDatasets). The four data
files analyzed were all from Mix 2 and were named

QS20060131_S_18mix_02, LT20060105_S_18mix_03, run1pps_D06_
03005_hlee_18pro_mix_1144399822, and C0605_000118.

Depending on the instrument setting chosen, Protein Prospector
may attempt to determine fragment ion charges and deisotope the
peak list: it will deisotope 4800 data and deisotope and perform
charge state determination (for 1� and 2� fragments based on the
isotope spacing) for QSTAR data but will not attempt these prepro-
cessing steps for low resolution ion trap data. Protein Prospector then
splits the mass range covered by the fragment ions in the peak list in
half and uses the 20 most abundant peaks in each half of the spec-
trum for database searching (13).

All searches were performed against a Swiss-Prot database down-
loaded on May 24, 2007 to which a randomized version of the same
database was concatenated to give a total of 534,708 protein entries.
For initial searches, full tryptic specificity was required allowing for
one missed cleavage. Oxidation of methionine, protein N-terminal
acetylation, carbamidomethylation of cysteines, and pyroglutamate
formation from N-terminal glutamine residues were the only consid-
ered variable modifications, and up to two of these were allowed per
peptide. For the extensive searches the list of protein accession
numbers identified in the initial search for each instrument was used,
and nonspecific cleavages at both ends of the peptides were con-
sidered (similar to a no enzyme specificity search except the one
missed trypsin cleavage requirement was maintained). Variable mod-
ifications considered were acetyl (Lys), acetyl (protein N terminus),
acetyl � oxidation (protein N-terminal Met), Asn3 succinimide (Asn),
carbamidomethyl (Cys), carbamyl (Lys), carbamyl (N terminus), de-
amidated (Asn), dethiomethyl (Met), dioxidation (Met), Gln3 pyro-Glu
(N-terminal Gln), Glu 3 pyro-Glu (N-terminal Glu), Gly-Gly (Lys) (i.e.
ubiquitination), HexNAc (Ser or Thr), Met loss (protein N-terminal
Met), Met loss � acetyl (protein N-terminal Met), methyl (Lys), nitro
(Tyr), oxidation (Met), oxidation (Trp), phospho (Ser, Thr, or Tyr),
trioxidation (Cys), Trp 3 hydroxykynurenine (Trp), and Trp 3 kynu-
renine (Trp).

For the XCT data file (C0605_000118), all spectra were considered as
2� or 3� precursors. Parent mass tolerance was 2.5 Da; fragment
mass tolerance was 0.6 Da. Instrument type was set to ESI-ION-TRAP-
low-res. For the LTQ data file (LT20060105_S_18mix_03) all spectra
were considered as 2� or 3� precursors. Parent mass tolerance was
2 Da; fragment mass tolerance was 0.6 Da. Instrument type was set
to ESI-ION-TRAP-low-res. For the QSTAR data file (QS20060131_
S_18mix_02) all spectra were considered as 2� or 3� precursors.
Parent mass tolerance was 100 ppm, and a fragment mass tolerance
of 0.1 Da was used. Instrument type was set to ESI-Q-TOF. For the
4800 data file (run1pps_D06_03005_hlee_18pro_mix_1144399822) all
spectra were assumed to be singly charged, and parent and fragment
mass tolerances of 400 ppm and 0.2 Da were considered. Instrument
type was set to MALDI-TOF-TOF. All the mass tolerance parameters
were chosen based on cursory examination of the mass accuracy of
the data sets. Supplemental Fig. 1 shows histograms of the precursor
mass accuracy for all reported assignments. This shows that there
was a systematic error in the QSTAR raw data and that the 4800 data
were unusually poorly calibrated. For data from all instruments, the
acceptance threshold was set as the E-value at which a 2.5% peptide
false positive rate was reached according to the target-decoy data-
base search results. The previously published results for these data
sets were based on searching using Sequest (14), and they also
reported a 2.5% false positive rate.

Protein Prospector calculates expectation values based on random
answers. Each spectrum, as well as being searched against the
specified database, is also searched against a database of random-
ized (sequence-shuffled) sequences. This is performed to reduce the
chance of homologous peptide sequences being present in the dis-
tribution, which is more likely if the results from a normal database
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search are used after removing the top answer. Also as the normal
database is not random in nature, some sequences occur many
times, which can create spikes in the distribution. The results from the
randomized database search are plotted as a graph of score versus
log survival where survival is the ratio of all matches that exceed a
given score. From the highest scoring 10% of the distribution a linear
fit is calculated. The gradient and offset from this fit are then used to
extrapolate probabilities that a given score achieved in the search
against the normal target database is part of this incorrect score
distribution. To convert the probability to an expectation value, the
score probability is multiplied by the number of peptides in the normal
database that fit the precursor ion requirements; i.e. the peptide is
predicted to be formed by the specified enzyme cleavage and has the
correct mass (within the mass tolerance of the search). This method
for calculating the probability of a score being part of the random
distribution is similar to that proposed by Fenyo and Beavis (15)
except with the Protein Prospector scoring system the plot of score
rather than log score is more linear.

For mass modification searching of QSTAR data, the mzXML peak
list from file QS20060131_S_18mix_02 was modified so that a doubly
and triply charged version of every peak list was present (to remove
variability due to how the different softwares decide on precursor
charge state). Using Protein Prospector, the same four variable mod-
ifications considered in the initial searches (oxidation (Met), Gln 3
pyro-Glu, carbamidomethyl (Cys), and protein N-terminal acetylation)
were considered with up to two modifications per peptide. In addition,
a single mass modification between �100 and �300 Da was consid-
ered on any amino acid. The mass modification range is specified as
integers, but a mass defect is applied to the modification during the
search. This is because a modification is never an exact integer mass,
so if a mass defect is not applied this will introduce a significant loss
in mass accuracy to assignments, requiring an opening of precursor
and fragment mass tolerances considered to be able to assign the
modified peptides. Applying a mass defect (the default is to add
0.00048 Da per amu) allows data to still be searched without seriously
compromising the level of mass accuracy tolerance even when the
structure of the modification is not known. The benefit of using the
mass defect is more pronounced for higher mass accuracy data. It is
also increasingly important as you move to larger mass modifications;
e.g. for a 300-Da modification this corresponds to a mass shift of
0.144 Da. For the mass modification searches of QSTAR data de-
scribed in this study it reduces the number of precursors considered
by about a third compared with searching with 0.5-Da mass accuracy
on the precursor, resulting in a similar level effect on search speed
and false positive matches.

The requirement for tryptic specificity was removed at both termini.
Parent mass tolerance was set to 0.25 Da, and other parameters were
the same as in the previous QSTAR searches. In all other respects,
this searching is identical to a search with defined modifications, i.e.
comparing theoretical masses with observed masses without any
other filtering. Hence this is covering a very large search space, and
the restriction to searching only a short list of proteins is necessary if
large numbers (thousands) of spectral peak lists are to be searched.
This particular search of just under 4000 peak lists searched against
46 proteins (including homologs) completes in about 8 h on a dual
processor 2.8-GHz Intel Xeon desktop computer.

For Inspect (version downloaded July 2007), instrument type was
set as Q-TOF, protease was set as trypsin, and a “blind” search was
performed allowing one mass modification. Parent tolerance was set
to 0.25 Da, and fragment tolerance was set to 0.1 Da. A maximum
post-translational modification size of 300 Da was specified.

If search parameters are changed in a way that will alter peptide
score distributions (e.g. considering more modifications), then the
random score distributions should be redetermined so accurate prob-

abilities can be reported and used for expectation value calculation.
Also allowing for more modifications will increase the number of
potential peptides with the correct precursor mass, so the conversion
value from probability to expectation value will also change. Hence if
one compares a result from a data set searched using a list of defined
mass modifications with the result of the same peak list searched
allowing for undefined mass modifications, the same match will have
the same peptide score (based on number of b, y… ions matched) but
different expectation values. The searching of a restricted number of
database entries allowing for a vast range of modifications (i.e. a mass
modification search) creates complications in calculating an accurate
expectation value. Probabilities for a given score should be reason-
ably accurate. However, the number of entries with the correct pre-
cursor mass in this type of search (used to convert the probability to
an expectation value) could be an inaccurate measure. On the one
hand a very small protein database is being used, but conversely if
you allow for mass modifications of �100 to �300 Da this will mean
that any peptide in the database whose unmodified mass is within this
range of the precursor ion will be considered, so these two factors
balance each other out to some extent. Nevertheless any inaccuracy
in the expectation value measure will be the same to matches to a
decoy database. When Protein Prospector searches a concatenated
normal-randomized database when a list of accession numbers has
been specified, it will search against the randomized versions of the
same protein entries. Hence the false discovery rate estimation
should still be accurate.

RESULTS

Comparison of Peptide Identifications on Different Types of
MSMS Data—To assess performance of a search engine it is
useful to perform analyses of standard data sets that are
available in the public domain. One of the largest and most
versatile set of standard data sets is of a mixture of nominally
18 standard proteins that has been run on a wide variety of
different instruments (4).

For this assessment of Protein Prospector we chose to
analyze data sets from four different instruments used for Mix
2 analysis: an XCT (three-dimensional ion trap from Agilent/
Bruker), LTQ (linear ion trap from Thermo), QSTAR (ESI-Q-
TOF instrument from Sciex/Applied Biosystems), and a 4800
(MALDI-TOF-TOF (with a quadrupole collision cell between
TOFs) from Applied Biosystems), which together represent
the major types of CID fragmentation data in use. First these
published data sets were analyzed using standard search
parameters (assuming fully tryptic cleavages and only minimal
modifications allowed). Using stringent acceptance criteria,
a list of peptides and proteins was acquired for each sam-
ple. This list of proteins was then used to restrict the database
entries during further searches of the data. In this second level
analysis, semi- and completely non-tryptic peptides were also
considered as well as a very wide range of defined potential
modifications. This search is analogous to the Sequest
searches performed in the publication accompanying these
data sets (4). The numbers of peptides identified in these sec-
ondary analyses are presented in Table I and plotted as receiv-
er-operating characteristic curves in Fig. 1, and the full search
results are in supplemental Table 1. Also plotted in Fig. 1 are the
single data point results reported for the Sequest searches (4).
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It is possible to make comparisons of the results presented
here with the previously published search results using Se-
quest. However, exact number comparisons are not mean-
ingful as different search parameters were used, and the
numbers presented in the study are averages for 10 replicate
data sets, whereas the Prospector results are just one exam-
ple of each data set. The salient observation from these
results is the change in total number of matches at a given
rate of false positive identifications (e.g. the points at which
the curves intersect the dotted line in Fig. 1). The graph shows
that the results for XCT data are very similar from the two
search engines but that Protein Prospector identified signifi-
cantly higher numbers of components at the same false dis-
covery rate threshold for the other three instruments. Also
whereas the Sequest results suggested that the LTQ per-
formed dramatically better than other platforms, the Protein
Prospector results indicate much smaller differences between
LTQ, QSTAR, and 4800 data set results.

As can be seen from supplemental Table 1 and also noted
in the previous analysis of these data sets (4) a large number
of semi- and non-tryptic peptides are present as well as many
peptides observed with modifications that are formed when
samples are stored for long periods, such as deamidation,
oxidation, and succinimide formation from asparagine resi-
dues. This is not unexpected for a sample mixture that is

derived from commercial protein sources that will have been
purified long before the sample was analyzed. Because of
these factors, this sample mixture is a reasonable test bed for
evaluating database search software designed to find unex-
pected modifications.

Identifying Unexpected and Novel Modifications—MS-
Alignment, part of the Inspect software package, is a leading
freely available software tool that assigns unpredicted mass
modifications (7, 16). Therefore, MS-Alignment was used in
this study to evaluate the performance of Protein Prospector
in finding unexpected mass modifications searching the
QSTAR data set analyzed above, and then the results from
MS-Alignment were compared with analysis using Protein
Prospector. Assigning modifications to residues is a much
less reliable process than identifying peptides. The problem
stems from the difficulty in differentiating between a result
that is homologous to the correct answer and the actual
correct answer. For modification analysis, a search engine
can generally reliably assign a spectrum to a given peptide
sequence in the database with the correct modification mass,
but reporting of the site of modification is often not reliable
partly because there is frequently insufficient information to
determine the exact residue of modification. When searching
for mass modifications of undefined mass values this problem
is exacerbated, and it is common to obtain a peptide match
where a large part of the sequence is matched, but the region
containing the reported modification is not identified. Matches
where the peptide assignment is correct but the modification
and site assignment are not have been referred to as delta
mass correct (7).

Supplemental Table 2 presents a comparison of spectral
assignments by Inspect and Protein Prospector for all peak
lists in the QSTAR standard data set examined in the first part
of this study. At first glance, the level of correlation of results
between the two search engines is low. However, a significant
contribution to this apparent discrepancy in assignments be-
tween the two search engines are situations where the same

FIG. 1. Receiver-operating charac-
teristic curves for Protein Prospector
(PP) searches of the different instru-
ment data. The predicted number of in-
correct answers is derived by doubling
the number of matches to the decoy part
of the database in the concatenated da-
tabase search. The data points for the
Sequest results are derived from the av-
erage number of peptides reported in
the publication for each instrument with
the number of predicted incorrect results
indicated assuming a 2.5% FDR as re-
ported in the publication.

TABLE I
Comparison of peptide identifications using different instruments be-

tween Protein Prospector and Sequest

Both results are reported at a 2.5% peptide false discovery rate.
The numbers in parentheses in the Protein Prospector (PP) column
correspond to the number of decoy matches at this threshold.

Instrument
PP, non-tryptic,

defined modifications
Sequest
average

QSTAR 1046 (13) 485.6
XCT 623 (7) 604.4
LTQ 1318 (16) 1033.1
4800 1235 (15) 687.8
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peptide has been reported but the mass modification has
been reported differently. For example, one search engine
may report a tryptic peptide sequence with an undefined
mass modification, whereas the other reports the sequence
with an extra amino acid residue at one of the termini that
corresponds in mass to the undefined mass modification
reported by the other search engine. Unfortunately although
these search engines are very powerful at identifying peptides
and mass modifications, they currently lack “common sense”
so given the opportunity will sometimes report a more con-
voluted interpretation when a simpler explanation exists. To
try to minimize this phenomenon, when several interpretations
of a spectrum achieve the same score, Protein Prospector will
report assignments that contain no undefined mass modifi-
cations in preference to one containing an unnamed mass
modification.

Comparing the results of the two search engines, it is clear
that Inspect allows a wide degree of variability on the precur-
sor and fragment ion masses; i.e. Inspect often reported
deamidations when there was no evidence of a mass shift,
and it would report peptides as unmodified when the precur-
sor mass was incorrect by several daltons. Thus, for the
comparison of results it was decided to ignore these as dif-
ferences, and the final column in supplemental Table 2 indi-
cates whether matches of the two programs were considered
the same (1), delta mass the same (2), or different (0). A
summary of the overlap of Protein Prospector and Inspect
results is shown in Fig. 2. Comparing the two sets of results,
Protein Prospector and Inspect report the same peptide with
the same modification and site for 514 (of 3734) of the peak
lists. For a further 640 the answers are both peptide and delta
mass the same. Both search engines report confidence meas-
ures with their assignments. Inspect reports 588 matches with
p values of less than 0.1, whereas Protein Prospector reports

1050 matches with E-values less than 0.1. Of the 588 confi-
dent Inspect results Protein Prospector agrees according to
peptide and at least delta mass on 568 occasions. Conversely
Inspect only agrees with 615 of the 1050 confident matches
reported by Protein Prospector. This Venn diagram also
shows that there are considerable numbers of assignments
that both Inspect and Protein Prospector agree upon, but
neither assigned a high confidence to the assignment. Many
of these are due to wrong charge state assignments, and this
is discussed further below.

Of course, it would be preferable to know which matches
are being assigned correctly. Unfortunately as these are real
data, the correct answers cannot be definitely known, so a
certain level of subjectivity is introduced when deciding which
answers are believed to be correct. Our impression from
looking through the assignments is that Protein Prospector is
getting the correct or delta mass correct answer more often
than Inspect but that the difference is not as large as the 588
versus 1050 number disparity suggests; i.e. the Inspect p
values are probably more conservative than the Protein Pro-
spector E-values.

The Protein Prospector search was repeated against a con-
catenated normal-randomized database to get an estimate of
a false positive rate (data not shown). The first random data-
base hit had an expectation value of 0.25, and the second had
an expectation value of 0.99. Hence at the 0.1 expectation
value threshold used, practically all the results are non-ran-
dom. This does not necessarily mean they are identical to the
correct answer but that they are at least homologous. Indeed
as there are only two random database answers with expec-
tation values less than 1, this would suggest a higher accept-
ance threshold could be used. However, there is one signifi-
cant caveat with this set of peak lists that has to be
considered. As each spectrum is being searched with peak
lists representing it as a 2� and 3� precursor, there are going
to be a number of peak list matches that are to the wrong
precursor charge state but still report the same core peptide
(but either longer or shorter depending on whether the pre-
cursor charge state was higher or lower than that assigned to
the peak list). An example of this phenomenon is shown in Fig.
3, which shows the matches to peak lists 501 and 502,
representing the 2� and 3� versions of one spectrum. This
precursor was actually doubly charged, so the result for peak
list 501 (DSYVGDEAQSK) (Fig. 3a) is the correct assignment
for this spectrum. However, peak list 502 is matched to an
extended version of this peptide by both Protein Prospector
and Inspect (Protein Prospector reports 82.0394-GM(oxida-
tion)GQKDSYVGDEAQSK as shown in Fig. 3b). y2–y9 ions are
present in the peak list and are the same for the 2� and 3�

assignments. Four b ions are matched to the 2� version of
the spectrum, whereas three b ions and a doubly charged b
ion match to the assignment to the triply charged peak list
derived from the same spectrum. Indeed this is not a problem
unique to mass modification searching as it still occurs (al-

FIG. 2. Venn diagram showing the levels of overlap between
Protein Prospector (PP) and Inspect results, both without any
confidence level threshold and while applying thresholds of
E-value < 0. 1 and p < 0.1.
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FIG. 3. Duplication of peak lists for different charge states causes false positive identifications of the wrong charge state peak list
to homologous peptides to the correct answer. Both of the matches presented are derived from the same mass spectrum. The match in
a is assuming a 2� precursor charge state; the match in b is assuming a 3� precursor charge state.
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FIG. 4. Different charge state assignments to the same precursor can also lead to false positive matches in searches with defined variable
mass modifications. a and b show the matches to 2� and 3� precursor charge state peak lists of the spectrum that was acquired at 34.1304 min.
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though much less frequently) in defined modification
searches. Fig. 4 shows an example from the QSTAR defined
variable modification search for a spectrum acquired at
34.1304 min (reported in supplemental Table 1). Although the
match in Fig. 4a to the doubly charged peak list is clearly the
correct answer, the match of the triply charged peak list of this
spectrum in Fig. 4b to the extended peptide with a deamida-
tion and phosphorylation is also a significant scoring match.
In fact, we believe there are no phosphorylated peptides in
this sample because of the presence of alkaline phosphatase,
which should have removed all phosphorylations. This dupli-
cation of charge states thus makes determination of a sensi-
ble threshold for acceptance more complicated, and if the
original mzXML peak list had charge states assigned the
process would have been much simpler.

Most search engines are poor at representing the level of
ambiguity in modification site assignments. Auxiliary soft-
wares have been written to try to address this issue (17, 18)
but are not used in these versions of Protein Prospector or
Inspect, so for the data presented here, manual verification of
site assignments is necessary. However, we argue that results
of unknown mass modification searches are probably not
sufficiently robust to accept unsupervised anyway, so manual
verification would be advisable even if such a site assignment
score were reported.

Fig. 5 shows a histogram of all the mass modifications
reported in the Protein Prospector search along with expla-
nation for the major peaks. Several of the major peaks corre-
spond to amino acid losses. This is caused because the
addition of an extra amino acid to the sequence followed by
reporting this mass as a loss gives essentially the same list of

potential fragments with the exception of the addition of an
extra potential b and y ion (because of the increased length),
meaning this can get a larger score than the unmodified
equivalent. This problem is caused by the combination of
performing mass modification searching with removing any
required enzyme specificity for cleavage. Modifications of
�16 Da and �57 Da correspond to oxidation and carbam-
idomethylation. These peaks are disproportionately small in
this histogram because these two modifications were both
considered as defined modifications to methionine and cys-
teine, respectively, so if they were matched to the specific
modification on the correct residue then they were not re-
ported as a mass modification and so are not represented in
this histogram. A number of identifications are reported as
peptides with modifications of �2–8 daltons of which there
were about 20 confident identifications. What these actually
represent are spectra where a second, generally more in-
tense, precursor ion was co-isolated and fragmented at the
same time as the targeted precursor ion. The other major
group of new identifications is peptides containing amino acid
substitutions. Upon searching the literature, many of these
substitutions have been reported previously. Some peptides
with unusual mass modifications that are not listed in modi-
fication repositories such as Unimod were also identified. 18
spectra were reported by Protein Prospector with a mass
modification of nominally 209 Da to cysteine residues of
which 14 had expectation values of less than 0.1. For exam-
ple, Fig. 6a shows spectrum 1975, which was matched to
VPTPNVSVVDLTC(209)R. The matching of y1 and y4–y12
ions gives a confident match and suggests the modification of
209 Da is on the cysteine residue. Inspect reported a different

FIG. 5. Histogram of mass modifications reported by Protein Prospector when analyzing the QSTAR standard data set.
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modification to a peptide with a homologous sequence: VPT-
PDVSVVDLTVKLAK(�71). Fig. 6b displays this match and
shows that the Inspect assignment does not match ions
y1–y5 (the region where the two peptide assignments of Pro-
tein Prospector and Inspect differ most significantly). Also the
mass accuracy of most of these peak matches is significantly
outside the 0.1 Da mass accuracy expected. The 209 Da
modification is formed by the alkylation of the Cys-SH with
dithiothreitol (used to reduce disulfide bridges) followed by
carbamidomethylation of the dithiothreitol on its other –SH
group (caused by the addition of iodoacetamide to the mix-
ture to alkylate free cysteine residues).

Another modification observed (13 times) is an addition of
26 Da. This has been reported previously as an acetaldehyde
Schiff base modification to lysine residues (19), but we believe
all the reported modifications in this analysis are to the pep-
tide N terminus. An example spectrum of one of these mod-
ified peptides is shown in Fig. 7, which is peak list 2465. The
modification can be restricted to one of the two most N-
terminal residues by the b2 ion. In all the spectra detected
with this modification, all b ions are always modified.

Protein Prospector also identified a few spectra that repre-
sented peptides with adducts. Spectrum 1480, shown in Fig.
8, is matched to an adduct of 41 Da. No modification of �41

Da is listed in Unimod, but a modification of this mass has
been reported as an acetonitrile adduct in small molecule
mass spectrometry studies (20). In the methods section of the
publication accompanying this standard data set the authors
state that the samples were stored in 1% acetonitrile (4). This
modification appears to be eliminated as a neutral loss before
the peptide backbone is fragmented, producing a fragmenta-
tion spectrum of an unmodified species. Protein Prospector
reported four matches to adducts of 41 Da. Inspect did not
detect this modification because it cannot look for modifica-
tions that cause neutral losses.

DISCUSSION

There are many mass spectrometry MSMS database
search engines available for the research community. Hence it
can be difficult to assess which search engine is the most
appropriate choice for analyzing a given data set as compar-
isons of search engine performances are fraught with com-
plications because of different searching parameters and
thresholding for reporting the reliability of results. However,
what is clear is that most search engines work better with
certain types of data in preference to others. For example, it is
widely recognized that Sequest, X!Tandem, and OMSSA are
most effective with ion trap data. A goal of the Protein Pro-

Fig. 6. Identification of the peak list 1975. A precursor of m/z 854.931 was fragmented, and Protein Prospector reported a confident
assignment to the peptide VPTPNVSVVDLTCR with a modification of �209 Da on the cysteine residue (a). Inspect reported a match to a
homologous peptide, VPTPDVSVVDTVKLAK, with a modification of a loss of 71 Da from the C-terminal lysine (b). Plots in the top right corners
of each panel show mass errors for fragment ion assignments. The intensity of the precursor ion in these figures has been artificially reduced
to allow easier visualization of the fragment ions.

FIG. 7. Identification of the peak list 2465 to the peptide VLDALDSIK with a mass modification of �26 Da on the peptide N terminus.
This modification corresponds to an acetaldehyde Schiff base modification to the N-terminal amine group.
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spector software is to try to support data from all types of
mass spectrometric platforms. The results presented here
suggest that Protein Prospector has wider platform applica-
bility than Sequest. The numbers of peptides identified in the
non-tryptic searches allowing for extensive user-defined
modifications show similar numbers of peptides identified in
LTQ and 4800 data sets with the list of QSTAR-identified
peptides being not much shorter. This contrasts with the
Sequest results that suggested that the LTQ data set was
significantly more information-rich than others. Protein Pro-
spector uses slightly different scoring and looks for different
ion types depending on the instrument geometry, and this
extra flexibility makes it more generally applicable to a wider
variety of instruments.

As this study is based on published standard data sets,
hopefully other search engines will be evaluated using this
data set in the future, so further reference points comparing
search engines for different types of data can be obtained. It
should also be pointed out that for purposes of direct com-
parison with the published Sequest results identical peak lists
were used for searching. For the QSTAR data set charge
states were not assigned during creation of the peak lists even
though the data were good enough for charge state determi-
nation. Creating new peak lists with charge states assigned
would halve the number of peak lists to be searched and
would probably lead to halving the number of false positive
identifications at a given acceptance threshold.

In the comparison of results from unexpected mass modifi-
cation searching between Protein Prospector and Inspect, it
appears that Protein Prospector performed better at reliably
identifying more of the spectra. One factor contributing to this
improvement was the ability of Protein Prospector to be able to
consider a combination of user-defined modifications along
with one unexpected mass modification. This contrasts with
MS-Alignment of Inspect that can only consider unexpected
mass modifications. The data could have been searched to
allow for two mass modifications in Inspect, which would have
potentially allowed Inspect to correctly match a few more spec-
tra. However, in practice, any search allowing for two unspec-
ified mass modifications produces results that are extremely
unreliable. Thus, we would not recommend using this searching
strategy.

The number of results reported with an expectation value less
than 0.1 in the undefined mass modification search was similar
to the reported number of matches in the search of the same
data set with defined mass modifications. However, there are
clearly many correct matches in the undefined mass modifica-
tion search that cannot be in the other search results. This
suggests there must be answers in the defined modification
search that are no longer reported, or deemed confident, in the
mass modification search. This is not very surprising given that
the mass modification search is considering orders of magni-
tude more possibilities. This is exemplified in Table II, which lists
the average number of precursors that were considered in the

FIG. 8. Identification of peak list 1480 as VVDLMVHMASK with a modification of 41 Da somewhere on the peptide that is
subsequently lost as a neutral group and therefore is not present on any of the fragment ions. The plot in the top right corner shows the
mass errors for fragment ion assignments.
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three types of search used on the QSTAR data set in this
study. As can be seen, the initial search of the whole of
Swiss-Prot database and the subsequent extensive variable
modification search of the 46 proteins reported in the initial
search are of somewhat comparable size and therefore speed
with the modification search being slightly larger. However,
the mass modification search is roughly 2 orders of magni-
tude larger, which, if everything else was equal, would mean
expectation values for a given match in this search are going
to be 2 orders of magnitude less confident than the same
match in the variable modification or initial search. It also
explains why the mass modification searching is more than 10
times slower. This highlights one of the issues of measuring
the reliability of database searching in that Expectation values
are a measure of the reliability assuming all possibilities are
being considered and all are deemed equally possible, so if
you consider many more precursor peptide options by allow-
ing for more modifications, the reliability estimation becomes
more conservative.

In both of these searches a large percentage of the spec-
tra are being identified. There were a total of 1867 spectra
acquired (which were duplicated as 2� and 3� precursors
to produce 3734 peak lists). Hence well over half of the
spectra are identified, and combining the two searching
strategies the number is probably close to two-thirds of all
spectra assigned. This is also despite the fact that precur-
sors were only considered as doubly or triply charged,
whereas in reality there were a few spectra of precursors at
higher charge states. New peak lists were created in-house
from these raw data that had correct precursor charge state
assignments. The data were then searched allowing for
variable modifications (not unknown mass modifications),
and three spectra were confidently matched to 4� precur-
sors, and four spectra were confidently matched to 5�

precursors (data not shown). Despite this claim of generally
better performance using Protein Prospector, we believe
that searching using both softwares is a sensible option if
one wants to fully characterize a sample. As can be seen in
Fig. 2, a significant number of answers were confidently
reported by Inspect that Protein Prospector agreed upon
but did not deem significant matches. As the two softwares
use significantly different approaches for identification, if
both report the same result this does add weight to the
assignment.

The emphasis of this presented work was to allow mean-
ingful comparison of results between Protein Prospector and

the published Sequest results rather than necessarily to ana-
lyze the published data set as comprehensively as possible.
Hence the identical mzXML peak lists that were used for the
Sequest analysis were also used in this study. In fact, these
peak lists are not perfect representations of the raw data as
charge states are not assigned to the precursor ions despite
the data being unquestionably good enough to determine
precursor ion charge states for some instruments. Also man-
ually looking at some of the raw data, there are quite notice-
able problems with labeling monoisotopic peak masses of
multiply charged fragment peaks; the masses labeled quite
often differ significantly from the observed peak, and informa-
tion that would allow recognition of these peaks as multiply
charged is often lost. Hence there is still clearly room for
improvement in the analysis of these standard data sets.

There are several advantages of the Protein Prospector
software over the alternatives for mass modification analysis.
Its ability to perform searches allowing for a mixture of defined
and unknown mass modifications gives greater flexibility. It
can look for very large mass modifications, making it a pow-
erful tool for identification of cross-linked peptides (12). It can
identify modifications that are eliminated as neutral losses
upon peptide fragmentation, such as sulfation and O-glyco-
sylation, that alternative mass modification software cannot
consider. It can access the raw data for many instrument
formats, allowing identification of whether the monoisotopic
peak was correctly labeled or if there was a co-eluting com-
pound that may have been isolated and fragmented at the
same time. It is part of the same search engine that does the
conventional style database searching, so transfer of informa-
tion from an initial search that produces the list of candidate
proteins to this mass modification search is nothing more than
the click of a button. This may seem a trivial advantage, but
the effort required to take results from one program and
submit them into another is generally sufficient to prevent
people from trying this type of search. Finally as this software
is part of a larger set of proteomics tools, there are direct links
to other software that can be used to help verify results. This
software is freely available on the web at http://
prospector2.ucsf.edu/.
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by the Vincent J. Coates Foundation. The costs of publication of this
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ance with 18 U.S.C. Section 1734 solely to indicate this fact.

TABLE II
Comparison of average number of precursors (search space) considered for the three types of searches of QSTAR data presented in this study

Search Details
Average number of

precursors considered

“Regular” All Swiss-Prot, 4 considered modifications 14,859
“Extensive defined modifications” 46 proteins with 24 considered modifications 26,253
“Undefined mass modifications” 46 proteins with any mass modification between �100 and �300 Da 2,331,839
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□S The on-line version of this article (available at http://www.
mcponline.org) contains supplemental material.
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